
Eur. Phys. J. D 35, 97–104 (2005)
DOI: 10.1140/epjd/e2005-00227-1 THE EUROPEAN

PHYSICAL JOURNAL D

Relevance of sub-surface chip layers for the lifetime
of magnetically trapped atoms

B. Zhang1, C. Henkel1, E. Haller2, S. Wildermuth2, S. Hofferberth2, P. Krüger2, and J. Schmiedmayer2,a
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Abstract. We investigate the lifetime of magnetically trapped atoms above a planar, layered atom chip
structure. Numerical calculations of the thermal magnetic noise spectrum are performed, based on the exact
magnetic Green function and multi layer reflection coefficients. We have performed lifetime measurements
where the center of a side guide trap is laterally shifted with respect to the current carrying wire using
additional bias fields. Comparing the experiment to theory, we find a fair agreement and demonstrate that
for a chip whose topmost layer is metallic, the magnetic noise depends essentially on the thickness of that
layer, as long as the layers below have a much smaller conductivity; essentially the same magnetic noise
would be obtained with a metallic membrane suspended in vacuum. Based on our theory we give general
scaling laws of how to reduce the effect of surface magnetic noise on the trapped atoms.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.75.Be Atom and neutron optics

1 Introduction

In the field of atom cooling and trapping, there has been
rapid progress towards miniaturisation and integration
(for a general overview see [1,2]), as the present special
issue illustrates. Small particle traps are now being imple-
mented as the building blocks of future quantum comput-
ers [3,4]. Integrated atom optical circuits also distribute
coherent matter waves for interferometric [5] and nano
lithographic applications.

Recent experiments are working with hybrid elec-
tromagnetic solid-state surface guides, or “atom chips”,
where trapping and cooling of atoms to µK tempera-
tures and down to the Bose-Einstein degeneracy has been
demonstrated [2,6–10]. It has become clear that such cold
atoms are perturbed by thermal electromagnetic fields
generated by the nearby, “hot” solid substrate, leading
to heating, trap loss and scattering [11–13]. In previous
work, one of the present authors (C.H.) and co-workers
have derived the loss rate for a trapped atom that is
coupled to fluctuating fields in the vicinity of a room-
temperature metallic and/or dielectric surface (half-space
structure) [14]. Actual experiments, however, use more
complex chip structures involving several layers with lat-
eral patterning. We focus here on the impact of the subsur-
face layers on atom trap lifetimes and compare the theory
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to experiments. On the theoretical side, numerical calcu-
lations have been set-up, building on the exact method of
reference [14]. We consider loss processes that are due to
a transition to an untrapped internal state (Zeeman sub-
level). Experimentally, we have worked with a standard
Z-wire trap [29] and added a magnetic bias field to shift
the trap center with respect to the current carrying wire.
This permits to differentiate between current fluctuations
of technical origin and intrinsic thermal noise from the
chip surface. The data are fairly well described by a the-
ory without adjustable parameters. The calculations show
that for chips whose top layer is a good metallic conductor,
the resistivity and thickness of this layer are the essential
parameters determining the magnetic noise and hence the
trap lifetime. As long as they have a much larger resistiv-
ity, the subsurface layers do not actually play a role.

The paper is organized as follows: in Section 2, we re-
view the theory for the loss rate and lifetime of an atom
with a magnetic moment above a layered chip. The rele-
vant loss rate is proportional to the magnetic field fluc-
tuation spectrum. This we compute at thermodynamic
equilibrium for the field, using the fluctuation-dissipation
theorem and electromagnetic reflection coefficients for a
multilayer chip. Section 3 describes the experimental pro-
cedures for the lifetime measurements and gives a de-
tailed comparison between theory and experiment re-
garding atom trap lifetimes in miniaturized structures.
Section 4 reviews scaling laws for both trap confinement
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and lifetime and discusses optimization strategies. The fi-
nal Section 5 gives a summary and outlook.

2 Internal spin flips

Neutral particles can be trapped in potentials created by
electromagnetic fields that typically depend on their in-
ternal state (electronic, hyperfine or magnetic). We focus
here on magnetic traps described by the Zeeman interac-
tion

VZ(r, t) = −µ · B(r, t), (1)

where µ is the particle’s magnetic moment and r its (cen-
ter of mass) position. A static field with a minimum of
|B(r)| provides a trap for a subset of magnetic states, the
weak field seekers: their magnetic moment is aligned an-
tiparallel to the field. Many atom chip traps are based on
this principle.

A loss process occurs when a fluctuating field induces
a transition |i〉 → |f〉 of the particle to a state with a
magnetic moment parallel to the field. The magnetic po-
tential then has the opposite sign, and we can assume that
the particle is rapidly expelled from the trap. These spin
flips are described also by the interaction Hamiltonian (1),
and are induced by fields with a frequency around the
Bohr transition frequency ωfi = (Ef − Ei)/�. A calcula-
tion based on Fermi’s Golden Rule yields for the transition
rate

Γi→f (r) =
∑

αβ

〈i|µα|f〉〈f |µβ|i〉
�2

Sαβ
B (r;−ωfi) (2)

where Sαβ
B is the magnetic field fluctuation spectrum eval-

uated at the transition frequency

Sαβ
B (r, ω) =

∫ +∞

−∞
dτ 〈Bα(r, t + τ)Bβ(r, t)〉eiωτ . (3)

The spectrum is taken at the trap center r, assuming that
the spatial extension of the trap is sufficiently small. From
these expressions, we can get the trap lifetime 1/Γi→f . We
evaluate the atom’s internal matrix elements 〈i|µα|f〉 as
described in reference [14]. The magnetic field fluctuation
spectrum Sαβ

B (r, ω) can be found with Green’s function
techniques as summarized in the following.

2.1 Magnetic field correlations

As discussed in reference [14], the spectral density of the
magnetic field fluctuations is proportional to the imagi-
nary part of the field’s Green function Hij(r, r; ω), ac-
cording to the fluctuation-dissipation theorem. This ap-
proach is exact for a field in thermodynamic equilibrium,
and it can be extended to non-equilibrium situations like
a heated surface, possibly with temperature gradients. In
that broader context, one can use a method that consists
of incoherently adding the fields radiated by thermally
excited currents in each volume element of the surface

[15–17]. The boundary conditions at the vacuum interface
and the damping inside the material have to be taken into
account, however. Otherwise one gets a different numeri-
cal prefactor for some components of the noise spectrum
Sij

B or even a different power law as a function of distance.
More details are discussed in the paper [18] in this issue.

Recall that the Green function describes the magnetic
field radiated by a point magnetic moment. This field is
the sum of the magnetic field in free space plus the field
reflected from the surface. The free space field leads to a
term Hvac

ij (r, r; ω) in the Green function that is actually
independent of the trap position r and gives the spectral
density of the blackbody field:

S
(vac)ij
B (r; ω) = S

(vac)
B (ω)δij (4)

S
(vac)
B =

�µ0ω
3

3πc3(1 − e−�ω/kBT )
(5)

where T is the temperature of the surface and kB the
Boltzmann constant.

To calculate the field reflected from the surface, we
expand the free-space magnetic field in plane waves and
apply the reflection coefficients rs,p(u) for each wave inci-
dent on the surface. Here, s and p label the two transverse
field polarizations and u is the sine of the angle of inci-
dence. The corresponding spectral density depends only
on the distance z to the surface and may be written in
terms of a dimensionless tensor hij(kz) [19]

S
(ref)ij
B (r, ω) = S

(vac)
B (ω)hij(kz), (6)

where k ≡ ω/c. hij is diagonal with elements
hxx = hyy = h‖ and hzz = h⊥ given by

h‖(kz) =
3
4
Re

∫ +∞

0

udu√
1 − u2

e2ikz
√

1−u2

×(rp(u) + (u2 − 1)rs(u)) (7)

h⊥(kz) =
3
2
Re

∫ +∞

0

u3du√
1 − u2

e2ikz
√

1−u2
rs(u). (8)

The range u > 1 corresponds to the evanescent part of
the angular spectrum a magnetic dipole generates in free
space. The square roots occurring in equations (7, 8) are
chosen with positive imaginary part.

Note that for a half-space structure, the reflection co-
efficients are given by the Fresnel formulas at the surface;
this has been used in previous work [14]. For a layered
chip, rλ (λ = s, p) are the effective reflection amplitudes
from the multilayer structure, as illustrated in Figure 1.
At the lowest interface (n = 3), the Fresnel reflection co-
efficients apply and are given by

r′s,n =
√

εn − u2 − √
εn+1 − u2

√
εn − u2 +

√
εn+1 − u2

(9)

r′p,n =
εn+1

√
εn − u2 − εn

√
εn+1 − u2

εn+1

√
εn − u2 + εn

√
εn+1 − u2

(10)
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Fig. 1. A chip with two layers on top of a semi-infinite sub-
strate. hn is the thickness of the nth layer, δn denotes the
optical path length for a single down and up ray in the nth
layer. r′λn are the Fresnel reflection coefficients at the interface
between the layers no. n and n+1 (λ = s, p), while rλn are the
effective (multilayer) reflection coefficients from layer no. n.

where εn is the permittivity of the nth layer. The effective
reflection coefficient off the nth layer is [20]

rλ,n =
r′λ,n + rλ,n+1e

iδn+1

1 + r′λ,nrλ,n+1eiδn+1
(11)

where r′λ,n is the Fresnel coefficient (Eq. (9) or (10)) and
rλ,n+1 the amplitude for the layer structure below; δn is
the phase shift in the layer:

δn = 2hnk
√

εn − u2, (12)

hn is the layer thickness and the square root is chosen
with positive imaginary part. In the case of Figure 1, the
lowest layer is n = 3 and we put rλ,3 ≡ r′λ,3. We then
apply equation (11) recursively for the next layers, until
the reflection from the topmost layer, rλ,1 = rλ,1(u), is
found. This is the coefficient we use in equations (7, 8).
The integral over u is computed numerically, with care
being taken for the (integrable) singularity 1/

√
1 − u2 at

the point u = 1.

2.2 Impact of subsurface layers

Based on Section 2.1, we calculate the loss rate for a
trapped rubidium atom from equation (2) and then get
the lifetime 1/Γi→f . A comparison to experimental data
can be found in Section 3.4 (see Fig. 7). We discuss here
the relevance of the subsurface layers on the lifetime.

We plot in Figure 2 the trap lifetime above a gold layer
deposited on a substrate with varying resistivity �3 nor-
malized to a gold layer suspended in vacuum (�3 = ∞).
The subsurface layer hardly has an impact on the trap life-
time, as long as the topmost layer has a resistance that is
smaller by at least two orders of magnitude. We now give
an analytical argument to understand this more clearly. As
mentioned in previous work [14], the integrands in equa-
tions (7, 8), as functions of u are peaked around u ∼ umax.
This is because the exponential e2ikz

√
1−u2 ≈ e−2kzu de-

creases only when u ∼ 1/(kz) 	 1. On the other hand,
the other factors in the integrands increase as powers of
u. The value of the integral is thus dominated by values
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Fig. 2. Trap lifetime vs. resistivity of sub-surface layer, nor-
malized to a single layer suspended in vacuum (gold, 3.1 µm
thick, resistivity 2.2 µΩ cm). The distance from the trapped
atom to the top surface is 10 µm. The layer permittivities are
ε0εn = ε0 + i/(ω�n) and ω/2π = 1.1MHz.

u ∼ umax around the maximum umax 	 1, and it is accu-
rate to use the asymptotic expansion of the reflection co-
efficients equations (9–11) for large u 	 1. Let us focus on
a distance comparable to the skin depth in the gold layer
(subscript 2) at the transition frequency, and a sub-surface
layer with a much smaller conductivity. We check that the
maximum then occurs around u2

max ∼ |ε2| 	 |ε3| 	 1. If
we consider the first order expansion in this regime, we get

rs,1 =
(1 − ∆2

s)(1 − eiδ2)
(1 − ∆s)2 − (1 + ∆s)2eiδ2

, (13)

with
∆s = i

√
ε2 − u2/u . (14)

And

rp,1 = −1 + ∆p
1 + eiδ2

1 − eiδ2
, (15)

where
∆p = 2i

√
ε2 − u2/(ε2u) . (16)

Note that |∆p| 
 1 around umax, while |∆s| ∼ 1. From
the equations above, we see that ε3 has cancelled from the
multilayer coefficients. This means that the sub-surface
layer has no effect on the trap lifetime as long as its resis-
tance is larger than the topmost (metallic) layer and the
trap is at a distance comparable to the skin depth in the
metal or smaller.

In Figure 3, we plot the lifetime (normalized to the life-
time above a gold half-space) for varying thickness t of the
topmost layer. The black solid line is the asymptotic result
obtained by inserting equations (13, 15) into the integrals
for the Green functions. The triangles and squares mark
calculations for a gold/silicon and gold/vacuum structure,
using the full multilayer reflection coefficients (11). We see
that the three situations give the same trap lifetime. For
these chip parameters, reducing the gold layer thickness
thus improves the trapping conditions. This happens be-
cause the layer being much thinner than the skin depth at
the relevant frequency (ξ ≡ (2�/(µ0ω))1/2), it is a ther-
mal radiation source across its whole thickness. For this
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Fig. 3. Trap lifetime vs. thickness t of the top layer (gold), nor-
malized to a gold half-space; distance of trapped atom to the
surface: z = 10 µm. Black solid line: based on the asymptotic
expansion (13, 15) of the reflection coefficients in the mag-
netic Green tensor. Triangles: gold/silicon structure; boxes:
gold layer in vacuum. For these two, the full multilayer reflec-
tion coefficients are used. Dashed (red) line: prediction (t+z)/t
of the quasistatic theory, valid when t is much smaller than
the skin depth. The arrow marks the skin depth in gold at the
transition frequency 1.1 MHz. The layer resistivities are given
in Figure 7.

reason, the quasi-static approximation introduced in ref-
erence [17] gives an excellent agreement with the exact
calculation, as illustrated by the dashed (red) curve in
the figure. This also applies to the layer theory plotted
in Figure 7. Only when the layer thickness exceeds the
skin depth, t 	 ξ, a difference appears which is due to
skin effect corrections that start to play even though the
distance z ∼ 0.1 ξ here. The impact of the skin depth is
also visible in Figure 7 (dashed line) from the crossover
above a semi-infinite gold chip: at distances z 	 ξ, the
lifetime increases faster with distance (see Ref. [14]) and
ultimately approaches the value given by the blackbody
radiation spectrum (5) (beyond the figure range).

We have observed that at a much larger distance (be-
yond the skin depth), the lifetime shows a minimum if the
gold layer is slightly thinner than the skin depth (barely
visible in Fig. 3). A similar behaviour has been noted re-
cently as a function of skin depth above cylindrical and
planar structures [11]. This is related to an absorption
resonance in the reflection from a thin metallic layer, as
discussed for example in reference [22]. Above the planar
structure considered here, we do not expect this effect to
be measurable since the surface-induced loss rate already
becomes too small for z 	 ξ.

3 Experiment

Over the last three years, the reduction of lifetimes in
traps close to conducting surfaces has been investigated
in a number of experiments. Both the influence of tech-
nical noise [23] and thermal noise near bulk conductors
of different materials [12,24,25] have been found to be in
quantitative agreement with the theory presented above.
Layered structures, which promise to reduce loss rates due

to thermal currents, have only been explored in an experi-
ment by the Vuletic group [21] which investigated the loss
above a 2 µm thick and 10 µm wide Cu wire and a Si sub-
strate. The Hinds group recently reported measurements
above a permanently magnetized structured covered by a
thin (400 nm) gold layer [10]. Here we present a configu-
ration that allows to investigate the loss due to spin flips
over a thin metal layer in a configuration where the con-
tributions of technical noise can be kept constant and the
thermal noise sources can be studied over a wide range of
distances near a multilayer structure.

3.1 Experimental set-up

The experiments were performed with our standard atom
chip set-up in Heidelberg [27,33]. We start with more than
108 87Rb atoms accumulated in a mirror magneto-optical
trap (MOT) a few mm from the chip surface. The atoms
are subsequently transferred to a purely magnetic Z-wire
trap and cooled to ∼10 µK by radio frequency (RF) evap-
oration. Both the MOT and the magnetic trap are based
on copper wire structures mounted directly underneath
the chip [27]. The resulting sample of >106 atoms is then
loaded to the selected chip trap, where a second stage of
RF evaporative cooling creates either a BEC or thermal
cloud just above the critical condensation temperature.

In order to determine the cloud’s distance from the
surface z we image the atomic cloud near the surface
in situ by resonant absorption imaging with a ∼3.5 µm
resolution. The imaging light path is slightly inclined
(∼25 mrad) with respect to the chip mirror surface. For
distances 300 µm > z > 5 µm, this leads to a duplicated
absorption image [9] which allows a direct measurement
of the height (see Fig. 4).

While the wire currents are very well known, the
strength of the external bias fields has to be calibrated by
measuring z at sufficiently large heights (Fig. 4). Diffrac-
tion effects from the chip surface and our imaging resolu-
tion do not allow to measure z for very close (z < 5 µm)
surface approaches. In these cases, we use the calibrated
values of the bias fields together with the measured wire
currents to infer z from numerical calculations of the trap-
ping potential, leading to an accuracy better than 1 µm.
These calculations include the actual arrangement of the
wires on the chip [28].

3.2 Atom chip set-up

Our atom chip set-up incorporates various different lay-
ers (see Fig. 5). The atom chip itself was fabricated using
our standard method [26]. It is grown on a 700 µm thick
silicon substrate covered with an insulation layer of SiO2

(500 nm) and a Ti adhesion layer (35 nm). The gold layers
with the desired wire patterns are created using a nano-
lithographic lift-off technique adapted for thick (>1 µm)
layers. The major chip area used in this experiment is
covered with a 1.8 µm thick reflection layer containing
gaps (width 10 µm) to isolate the current carrying wires.
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Fig. 4. Example of the calibration of the magnetic bias field.
Top: measured height vs. current in Z-wire at a bias field of
12 G. The line represents a calculation using a model of the
actual wire configuration with the bias field as a free parameter.
Once the bias field is known it can be used to calculate other
heights at positions closer to the chip. Bottom: residuals for
the fit. Inset: the imaging laser is reflected of the chip surface
which results in two images of the atom cloud. The upper inset
shows an absorption image of a trapped atom cloud ∼35 µm
away from the atom chip surface and the lower inset shows an
exaggerated scheme of the set-up.

Fig. 5. Layer structure of the chip. The resistivities of the
layers are � > 106 Ω cm (MACOR), � = 1.7 µΩcm (cop-
per), � = 17 mΩcm (doped silicon), � > 104 Ω cm (SiO2)
and � = 2.2 µΩcm (gold).

The thicker Z-wire structures were fabricated with a two
layer technique allowing a thickness of 3.1 µm (wire cross-
section 3.1× 100 µm2). The atom chip structure is placed
on top of a 5 mm thick ceramics chip holder (MACOR).

3.3 Lifetime measurements

The lifetimes of trapped ultra cold 87Rb atoms were mea-
sured in a Ioffe-Pritchard type microtrap generated by
currents flowing through the Z-shaped wire. The measure-
ments are done with ∼1×105 thermal atoms at ∼1 µK in a
trap created with a current of 2 A and a Larmor frequency
of ωfi/2π = 1.1 MHz at the trap minimum (corresponding
to a field of 1.5G).

Fig. 6. Lateral trap displacement. An external horizontal mag-
netic field Bhorz cancels the circular magnetic field Bwire of a
current carrying wire directly over the wire. By applying an
additional vertical field Bvert perpendicular to the chip sur-
face, the trap can be positioned at a distance d from the wire
and a height z above the chip surface.

The microtraps on the chip are created in the side
guide configuration [1]. In the standard configuration the
magnetic field Bwire of the the Z-shaped wire is (nearly)
canceled directly above the center of the Z wire by a hor-
izontal field Bhorz (see Fig. 6). By adding a vertical mag-
netic field component Bvert the bias field is rotated around
the central wire of the Z and with it the trap minimum.
By adjusting the strength and orientation of the bias field
the trap minimum can be positioned at a given distance
d from the current carrying wire and at an given height z
above the 1.8 µm thick gold layer of the chip (Fig. 6).

Placing the trap a significant distance away from the
Z-wire allows us to keep the trap parameters nearly con-
stant for each height above the surface. The further away
one moves, the easier it is to keep the traps equal, inde-
pendent of the height for the same wire current. But the
traps get shallower at larger distance from the trapping
wire. A shallow trap cannot be brought close to the sur-
face for the lifetime measurements, because the trap depth
is reduced due to the atom-surface interaction potential.
Atoms are thus lost by evaporation across the potential
barrier towards the chip surface. This leads to a signifi-
cant cooling of the sample: in a dense cloud, evaporation
leads typically to a final temperature of about 1/10th of
the trap depth.

For each lifetime measurement we image either in situ
or after a time-of-flight expansion. The former allows mea-
surements down to lower atom number, the latter allows
us to determine both the number of atoms and the temper-
ature of the atoms. Both measurements of atom number
agree, and both are used to determine the lifetime of the
trapped clouds.

The independent measurement of the temperature is
crucial because it permits to see if we have additional
losses due to surface induced evaporation. A decrease in
temperature is a direct indication that in addition to spin
flips, atoms cross the lowered potential barrier towards
the surface, resulting in a reduction of the lifetime. We
observe that the decay of the atom number is then gen-
erally non-exponential. The height at which this becomes
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Fig. 7. Experimental data and theoretical predictions for the
trap lifetime in a miniaturized magnetic Ioffe-Pritchard type
trap. Symbols: life time data for a trap laterally displaced by
280 µm with respect to the current-carrying wire structure. Be-
low 10 µm distance, surface evaporation decreases the lifetime.
Lines: theoretical predictions with different level of detail for
loss processes (spin flips) induced by thermal surface noise.
The atom transits from |Fi, mi〉 = |2, 2〉 to |Ff , mf 〉 = |2, 1〉,
the transition (Larmor) frequency being ωfi/2π = 1.1 MHz.
Dots (red line): layered chip (thin gold layer, doped silicon sub-
strate, see parameters in Fig. 5). Solid (red) line: layered chip
structure, including the measured trap lifetime at large dis-
tance. Dashed (green) line: bulk substrate (gold half-space).
Dot-dashed (green) line: bulk structure, including the large
distance trap lifetime.

important varies from z = 3 µm for moderately confin-
ing traps directly over the wire up to z = 40 µm for very
shallow traps at a lateral distance d = 520 µm from the
trapping wire.

In the following comparison between calculation and
experiment we only consider data where the tempera-
ture stays constant so that the main loss mechanicms are
surface-induced spin flips and background collisions.

3.4 Comparison theory–experiment

To investigate the influence of the thermal noise we choose
a distance d = 280 µm as a compromise between being
dominated by technical noise for small d and losing atoms
due to evaporation towards the surface at large d.

In order to make a comparison between theory and
experiment, we plot in Figure 7 both experimental data
(symbols) and numerical calculations (lines). A agreement
to better than a factor of two is found down to distances
of a few microns when the theory takes into account (i)
the finite thickness of the topmost (gold) layer and (ii) a
distance-independent loss rate (red line). We stress that
the latter rate is taken from the experimental data (sat-
uration at large distance) so that the theory has no ad-
justable parameters. The figure shows that the lifetime
above a thin (few µm thick) gold layer is significantly en-
hanced compared to a gold half space. We have checked
that adding a MACOR or copper substrate below the
thick silicon wafer does not change the results of the cal-

culation. We attribute the discrepancy between experi-
ment and theory to technical noise in wire current and
bias field, and to atom-surface potentials that lower the
potential barrier towards the surface, as also suggested by
the Vuletic group [21]. As mentioned above, this mecha-
nism becomes more important at short distance (below a
few micron).

4 Optimization strategies for trap loss

We now discuss briefly strategies to reduce trap loss by
optimizing different chip parameters. We focus on a flat,
rectangular wire (thickness t 
 width w) and on a trap
with a specific transverse confinement given by a fixed
magnetic field gradient dB/dz. The distance to the chip z
can be adjusted with additional bias fields and is kept as
a free parameter. The magnetic gradient above the center
of the rectangular wire is given by [2,31,33]

dB

dz
≈ µ0

4π

8I

w2 + 4z2
=

µ0

4π

8jtw

w2 + 4z2
(17)

where j is the current density (assumed to be uniform
across the wire area). The maximum confinement is the-
oretically achieved at the surface z = 0, in practice rea-
sonably large values occur in the range z ≤ w. A strong
confinement also requires a large current density, but this
leads to a significant ohmic dissipation in the wire and an
increase in temperature, as studied by Groth et al. [26].
Let us assume a linear temperature dependence of the re-
sistance, �(T ) = �0 + αT where αT is the contribution
of scattering by phonons and �0 is the zero temperature
resistivity related to the scattering by impurities [32]. The
temperature increase can then be written in the form

∆T =
�

d�/dT

j2

j2
max − j2

(18)

=
�

α

j2

j2
max − j2

where � = �(T ) is the resistivity of the wire, taken at
the equilibrium temperature T before switching on the
current. The maximum current density jmax is given by

jmax =
(

K

t d�/dT

)1/2

=
(

K

t α

)1/2

, (19)

K being the contact heat conductance to the chip sub-
strate. In terms of jmax, the magnetic gradient becomes

dB

dz
≈ 2µ0

π

√
K

α

j

jmax

√
t w

w2 + 4z2
. (20)

A typical value at a height z = w/2 is 106 G/cm for a gold
wire in contact with a silicon substrate [26] (t = 1 µm,
w = 10 µm, j = jmax).

In the following optimization we use an expression for
the trap loss rate due to thermally induced spin flips which
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can be derived from reference [17] in the flat wire limit
(z, w 	 t)

γ ≈ A
Tw

�(Tw)
3π t

8z2 (1 + (2z/w)2)1/2
(21)

with A = µ2
Bg2

F µ2
0kB/(2π�)2. Here, Tw = T + ∆T is the

actual wire temperature.
We now want to minimize γ while maintaining a fixed,

large magnetic gradient dB/dz and hence fixed transver-
sal confinement (fixed trap oscillation frequency). Elimi-
nating t in favor of dB/dz in equation (21), and taking
into account wire heating equation (18), we find

γ ≈ A′
(

dB

dz

)2 (w2 + 4z2)3/2

z2w

(
T

∆T
+ 1

)
(22)

where

A′ = 3π3A/(32Kµ2
0) (23)

≈ 0.8 s−1 × g2
F

K

where K is given in units of 106 W/Km2 and the gra-
dient dB/dz in equation (22) in units of 106 G/cm.
For Rb atoms (gF = 1/2) and typical atom chip
wires (K ≈ 5 × 106 W/Km2) [26] and a magnetic field
gradient of 105 G/cm (resulting in a trap frequency
ω/2π ∼ 100 kHz) we find a typical loss rate of γ ≈ 4 ×
10−4(T/∆T + 1) s−1, or a life time > 100 s.

Both trap geometry and wire material allow to reduce
this loss rate. For the geometric considerations we see that
both small and large distances from the wire are unfavor-
able. The fraction involving the trap height z in equa-
tion (22) is minimized for z = w/

√
2 where the gradient is

still close to its maximum value, see equation (17). This is
the optimum for a fixed temperature increase of the wire,
∆T/T = const.

Alternatively one can work on reducing T/∆T + 1
which depends on the material properties of chip and wire
and can be expressed as:

T

∆T
+ 1 =

d�

dT

T

�

j2
max − j2

j2
+ 1. (24)

This can be minimized by choosing a current density j as
close as possible to the theoretical maximum jmax. The
lowest value is then given by the ‘+1’. This represents
Joule heating (∆T ) of the wire with a substrate held at
T = 0.

At a fixed ratio j/jmax, the first term involving T/�
is determining the temperature dependence. In this term
the material properties of the wire enter. Within the lin-
ear temperature dependence for �(T ) assumed here, it
can be reduced by cooling, as shown in Figure 8 where
equation (24) is plotted vs. the dimensionless temperature
αT/�0.

Two strategies are visible in this figure. Increasing the
current density (compare j/jmax = 0.3 and 0.7), allows to
achieve the same gradient with a thinner wire: from equa-
tion (20), (j/jmax)

√
t = const., and the loss rate becomes
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Fig. 8. Scaling of trap loss rate (22) with temperature at fixed
confinement. Linear model for the resistivity, � = �0 + αT .
Lines: fixed ratio to critical current density j/jmax [we actually
plot the expression (24)]. The temperature is scaled to the
dimensionless quantity αT/�0.

smaller. In practice, the limits of this strategy are set by
instabilities occurring for a close-to-critical current.

At fixed j/jmax, the loss rate can be reduced by low-
ering the temperature (Fig. 8). For αT 
 �0 the loss rate
γ decreases linear with T . The temperature where this
linear decrease with cooling sets in (T 
 �0/α) is higher
for materials with large resistivity and small α = d�/dT .
Materials with large �0 can be found among alloys, as
suggested by Dikovsky et al. [34].

5 Summary and outlook

We have studied the lifetime of magnetically trapped
atoms above a layered atom chip. Numerical calculations
have been performed for the loss rate due to spin flips
induced by thermal magnetic near fields, taking into ac-
count multiple reflections in the layers. Experimentally,
we have been able to shift the trap center with respect
to a current carrying wire, in order to differentiate be-
tween current fluctuations of technical origin, on the one
hand, and intrinsic thermal noise in the chip surface, on
the other. The data roughly agree with a theory without
adjustable parameters. Trap loss at a large lateral dis-
tance from the wire is dominated by thermally induced
spin flips. The finite thickness of the topmost layer does
play a role here, and it helps to increase the trap lifetime
if it is substantially thinner than the skin depth at the
Larmor frequency. At shorter distance, atom-surface po-
tentials of the van der Waals-Casimir-Polder type lower
the trap barrier and open additional loss channels. In fu-
ture work, the control over the trap position will permit to
separate quantitatively the magnitude of technical noise
sources in both the acoustic and radio frequency range.
These ranges involve different mechanisms for trap loss on
the microscopic level, either heating or spin flips. Optimiz-
ing the wire geometries we expect that life times >100 s
can be achieved even for tight confinement with trap fre-
quencies exceeding 100 kHz.
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